The motor inhibitory system operating during active sleep is tonically suppressed by GABAergic mechanisms during other states.

نویسندگان

  • M C Xi
  • F R Morales
  • M H Chase
چکیده

The present study was undertaken to explore the neuronal mechanisms responsible for muscle atonia that occurs after the microinjection of bicuculline into the nucleus pontis oralis (NPO). Specifically, we wished to test the hypothesis that motoneurons are postsynaptically inhibited after the microinjection of bicuculline into the NPO and determine whether the inhibitory mechanisms are the same as those that are utilized during naturally occurring active (rapid eye movement) sleep. Accordingly, intracellular records were obtained from lumbar motoneurons in cats anesthetized with alpha-chloralose before and during bicuculline-induced motor inhibition. The microinjection of bicuculline into the NPO resulted in a sustained reduction in the amplitude of the spinal cord Ia-monosynaptic reflex. In addition, lumbar motoneurons exhibited significant changes in their electrophysiological properties [i.e., a decrease in input resistance and membrane time constant, a reduction in the amplitude of the action potential's afterhyperpolarization (AHP) and an increase in rheobase]. Discrete, large-amplitude inhibitory postsynaptic potentials (IPSPs) were also observed in high-gain recordings from lumbar motoneurons. These potentials were comparable to those that are only present during the state of naturally occurring active sleep. Furthermore, stimulation of the medullary nucleus reticularis gigantocellularis evoked a large-amplitude IPSP in lumbar motoneurons after, but never prior to, the injection of bicuculline; this reflects the pattern of motor responses that occur in conjunction with the phenomenon of "reticular response-reversal." The preceding changes in the electrophysiological properties of motoneurons, as well as the development of active sleep-specific IPSPs, indicate that lumbar motoneurons are postsynaptically inhibited following the intrapontine administration of bicuculline in a manner that is comparable to that which occurs spontaneously during the atonia of active sleep. The present results support the conclusion that the brain stem-spinal cord inhibitory system, which is responsible for motor inhibition during active sleep, can be activated by the injection of bicuculline into the NPO. These data suggest that the active sleep-dependent motor inhibitory system is under constant GABAergic inhibitory control, which is centered in the NPO. Thus during wakefulness and quiet sleep, the glycinergically mediated postsynaptic inhibition of motoneurons is prevented from occurring due to GABAergic mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GABAergic pontine reticular system is involved in the control of wakefulness and sleep.

The present work is the first in a series of studies designed to examine the role of a brainstem GABAergic system in the control of the behavioral states of sleep and wakefulness. GABA, muscimol (a GABAA receptor agonist) and bicuculline methiodide (a GABAA receptor antagonist) were microinjected, separately, into the nucleus pontis oralis (NPO) in three chronic, unanesthetized cats. The effect...

متن کامل

Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. Recent technological advances have illuminated the role of GABAergic neurons in control of cortical arousal and sleep. Sleep-promoting GABAergic neurons in the preoptic hypothalamus are well-known. Less well-appreciated are GABAergic projection neurons in the brainstem, midbrain, hypothalamus, and basal forebra...

متن کامل

Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons.

Extracellular electrophysiological recordings in freely moving cats have shown that serotonergic neurons from the dorsal raphe nucleus (DRN) fire tonically during wakefulness, decrease their activity during slow wave sleep (SWS), and are nearly quiescent during paradoxical sleep (PS). The mechanisms at the origin of the modulation of activity of these neurons are still unknown. Here, we show in...

متن کامل

Relationship between sensory stimuli-elicited IPSPs in motoneurons and PGO waves during cholinergically induced muscle atonia.

Inhibitory postsynaptic potentials (IPSPs) can be produced in masseter motoneurons by sensory stimuli after the injection of carbachol into the nucleus pontis oralis (NPO) of alpha-chloralose-anesthetized cats. We have postulated previously that these IPSPs, which are induced in masseter motoneurons by sensory stimuli, arise as the result of phasic activation of the motor inhibitory system that...

متن کامل

State-dependent GABAergic inhibition of sciatic nerve-evoked responses of dorsal spinocerebellar tract neurons.

Peripheral nerve-evoked potentials recorded in the cerebellum 35 yr ago inferred that sensory transmission via the dorsal spinocerebellar tract (DSCT) is reduced occasionally and only during eye movements of active sleep compared with wakefulness or quiet sleep. A reduction or withdrawal of primary afferent input and/or ongoing inhibition of individual lumbar DSCT neurons may underlie this occu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 4  شماره 

صفحات  -

تاریخ انتشار 2001